Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1866(5): 130098, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35104623

RESUMO

Our objective was to examine the effects of N-methylacetazolamide (NMA), a non­carbonic anhydrase inhibitor, on ischemia-reperfusion injury. Isolated rat hearts were assigned to the following groups: 1) Non-ischemic control (NIC):110 min of perfusion and 2) Ischemic control (IC): 30 min of global ischemia and 60 min of reperfusion (R). Both groups were repeated in presence of NMA (5 µM), administered during the first 10 min of R. Infarct size (IS) was measured by TTC staining. Developed pressure (LVDP) and end-diastolic pressure (LVEDP) of the left ventricle were used to assess systolic and diastolic function, respectively. The content of P-Akt, P-PKCε, P-Drp1 and calcineurin Aß were measured. In cardiomyocytes the L-type Ca2+ current (ICaL) was recorded with the whole-cell configuration of patch-clamp technique. The addition of NMA to non-ischemic hearts decreased 15% the contractility. In ischemic hearts (IC group), NMA decreased IS (22 ± 2% vs 32 ± 2%, p < 0.05) and improved the post-ischemic recovery of myocardial function. At the end of R, LVDP was 54 ± 7% vs 18 ± 3% and LVEDP was 23 ± 8 vs. 55 ± 7 mmHg ¨p < 0.05¨. The level of P-Akt, P-PKCε and P-Drp1 increased and the expression of calcineurin Aß decreased in NMA treated hearts. Peak ICaL density recorded at 0 mV was smaller in myocytes treated with NMA than in non-treated cells (-1.91 ± 0.15 pA/pF vs -2.32 ± 0.17 pA/pF, p < 0.05). These data suggest that NMA protects the myocardium against ischemia-reperfusion injury through an attenuation of mitochondrial fission by calcineurin/Akt/PKCε-dependent pathways associated to the decrease of ICaL current.


Assuntos
Bloqueadores dos Canais de Cálcio , Cardiotônicos , Metazolamida , Traumatismo por Reperfusão Miocárdica , Animais , Calcineurina , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Cardiotônicos/farmacologia , Metazolamida/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
2.
Arch Biochem Biophys ; 694: 108600, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33007282

RESUMO

Physical training stimulates the development of physiologic cardiac hypertrophy (CH), being a key event in this process the inhibition of the Na+/H+ exchanger. However, the role of the sodium bicarbonate cotransporter (NBC) has not been explored yet under this circumstance. C57/Bl6 mice were allowed to voluntary exercise (wheel running) for five weeks. Cardiac mass was evaluated by echocardiography and histomorphometry detecting that training promoted the development of physiological CH (heart weight/tibia length ratio, mg/mm: 6.54 ± 0.20 vs 8.81 ± 0.24; interstitial collagen content, %: 3.14 ± 0.63 vs. 1.57 ± 0.27; and cross-sectional area of cardiomyocytes, µm2: 200.6 ± 8.92 vs. 281.9 ± 24.05; sedentary (Sed) and exercised (Ex) mice, respectively). The activity of the electrogenic isoform of the cardiac NBC (NBCe1) was estimated by recording intracellular pH under high potassium concentration and by measuring action potential duration (APD). NBCe1 activity was significantly increased in isolated cardiomyocytes of trained mice. Additionally, the APD was shorter and the alkalization due to high extracellular potassium-induced depolarization was greater in this group, indicating that the NBCe1 was hyperactive. These results are online with the observed myocardial up-regulation of the NBCe1 (Western Blot, %: 100 ± 13.86 vs. 202 ± 29.98; Sed vs. Ex, n = 6 each group). In addition, we detected a reduction in H2O2 production in the myocardium of trained mice. These results support that voluntary training induces the development of physiologic CH with up-regulation of the cardiac NBCe1 in mice. Furthermore, the improvement in the antioxidant capacity contributes to the beneficial cardiovascular consequences of physical training.


Assuntos
Miocárdio/metabolismo , Condicionamento Físico Animal , Simportadores de Sódio-Bicarbonato/metabolismo , Animais , Cardiomegalia Induzida por Exercícios/fisiologia , Peróxido de Hidrogênio/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Isoformas de Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
3.
Pflugers Arch ; 472(1): 103-115, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31754830

RESUMO

The soluble adenylyl cyclase (sAC) was identified in the heart as another source of cyclic AMP (cAMP). However, its cardiac physiological function is unknown. On the other hand, the cardiac Na+/HCO3- cotransporter (NBC) promotes the cellular co-influx of HCO3- and Na+. Since sAC activity is regulated by HCO3-, our purpose was to investigate the potential functional relationship between NBC and sAC in the cardiomyocyte. Rat ventricular myocytes were loaded with Fura-2, Fluo-3, or BCECF to measure Ca2+ transient (Ca2+i) by epifluorescence, Ca2+ sparks frequency (CaSF) by confocal microscopy, or intracellular pH (pHi) by epifluorescence, respectively. Sarcomere or cell shortening was measured with a video camera as an index of contractility. The NBC blocker S0859 (10 µM), the selective inhibitor of sAC KH7 (1 µM), and the PKA inhibitor H89 (0.1 µM) induced a negative inotropic effect which was associated with a decrease in Ca2+i. Since PKA increases Ca2+ release through sarcoplasmic reticulum RyR channels, CaSF was measured as an index of RyR open probability. The generation of CaSF was prevented by KH7. Finally, we investigated the potential role of sAC activation on NBC activity. NBC-mediated recovery from acidosis was faster in the presence of KH7 or H89, suggesting that the pathway sAC-PKA is negatively regulating NBC function, consistent with a negative feedback modulation of the HCO3- influx that activates sAC. In summary, the results demonstrated that the complex NBC-sAC-PKA plays a relevant role in Ca2+ handling and basal cardiac contractility.


Assuntos
Adenilil Ciclases/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Inibidores de Adenilil Ciclases/farmacologia , Animais , Benzamidas/farmacologia , Sinalização do Cálcio , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Ventrículos do Coração/citologia , Isoquinolinas/farmacologia , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Ratos , Ratos Wistar , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Simportadores de Sódio-Bicarbonato/antagonistas & inibidores , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...